拉曼光譜儀的工作原理你知道嗎
點擊次數:1288 發布時間:
拉曼光譜儀是利用物質對不同波長的紅外輻射的吸收特性,進行分子結構和化學組成分析的儀器。通常由光源,單色器,探測器和計算機處理信息系統組成。
根據分光裝置的不同,分為色散型和干涉型。對色散型雙光路光學零位平衡紅外分光光度計而言,當樣品吸收了一定頻率的紅外輻射后,分子的振動能級發生躍遷,透過的光束中相應頻率的光被減弱,造成參比光路與樣品光路相應輻射的強度差,從而得到所測樣品的紅外光譜。
下面讓我們來了解一下拉曼光譜儀的工作原理吧
當一束頻率為v0的單色光照射到樣品上后,分子可以使入射光發生散射。大部分光只是改變方向發生散射,而光的頻率仍與激發光的頻率相同,這種散射稱為瑞利散射;約占總散射光強度的10-6~10-10的散射,不僅改變了光的傳播方向,而且散射光的頻率也改變了,不同于激發光的頻率,稱為拉曼散射。
拉曼散射中頻率減少,頻率增加的散射稱為反斯托克斯散射,斯托克斯散射通常要比反斯托克斯散射強得多,拉曼光譜儀通常測定的大多是斯托克斯散射,也統稱為拉曼散射。
散射光與入射光之間的頻率差v稱為拉曼位移,拉曼位移與入射光頻率無關,它只與散射分子本身的結構有關。拉曼散射是由于分子極化率的改變而產生的。
拉曼位移取決于分子振動能及的變化,不同化學鍵或基團有特征的分子振動,ΔE反映了能級的變化,因此與之對應的拉曼位移也是特征的。這是拉曼光譜可以作為分子結構定性分析的依據。